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The present paper deals with the problem of approximation of a continuous
parameter semigroup T(t), t > 0 on a Banach space X by means of a sequence of
discrete parameter semigroups (F~), where F. is a bounded operator on a Banach
space X., n E N, and where (X.) and X are related in some appropriate sense. This
problem arises, e.g., when numerical methods are used to approximate solutions of
initial boundary value problems in PDEs. The results obtained here present a new
set of tests for convergence of discrete semigroups, which are different from those
in (E. Gorlich and D. Pontzen, TiJhuku Math. J. (2) 34, No.4 (1982), 539-552).
Theorem 2 and its corollaries extend the earlier results on this point. ,t, 1993

Academic Press. Inc.

INTRODUCTION

Let (X, 11·11) be a Banach space, and (Xn , II· lin) a sequence of Banach
spaces approximating X in the following sense: There exist bounded linear
operators Pn: X --> X n , n E N such that for each x EX

lim IIPnxll" = IIxli.

In particular there is a constant p> 0 such that

VnEN, xEX.

Further, let (Pn) be a sequence of positive numbers tending to 0, and for
each n E N, let Fn:Xn-+ Xn be a bounded linear operator on Xn. We
consider conditions under which the sequence of discrete parameter
semigroups (F~) may converge in some sense to a continuous parameter
semigroup T(t), t > 0 defined on X. This problem arises, for example, in
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applications where numerical methods are used to approximate solutions
of linear initial boundary value problems by means of systems of finite
difference equations. One of the basic assumptions in the earlier investiga
tions of this problem (cf. [3, 7, 10, II, 13, 16]) was derived from the
stability condition of such systems, and may be formulated in functional
analytic language (Trotter [16]) as

n,kEN, (I)

where M and ware independent of nand k. A relatively recent study by
Gorlich and Pontzen [6] shows that convergence of a sequence of discrete
semigroups may still hold under weaker stability conditions than that
in (I).

The object of the present paper is to study this problem using stability
conditions different from those in [6], but which are weaker than (I).
Meawhile, a generalized form of limit inferior of sequences of operators is
employed, so that one obtains a more general theory than that which is
based on the existence of limits of such sequences. We remark that in this
case the limit semigroup T(t) is not in general Co, but rather of class (I, A).
We may also add that Theorems 1-3 and the corollaries below form a new
set of tests for convergence when it comes to the use of numerical methods
in solving initial boundary value problems. A strong version of Trotter's
Theorem on approximation of Co semigroups by means of discrete semi
groups [16] is also obtained in Corollary 2 of Theorem 2.

Section 1 is a brief review of the necessary notations and definitions.
Section 2 deals with a question concerning the boundedness of Riemann
sums. This will be useful in proving the convergence theorems of Section 3.

An example in discussed at the end. It arises from the problem of
discretization of a certain Cauchy problem (d. Sunouchi [15]).

I. PRELIMINARIES

By a limit of a sequence of vectors (xn), X nE Xn, we mean an element
x E X defined as

limxlI=x~ lim IIPll x-xn ll n =O.
n_ ,x

Consider a sequence of operators (All)' All: Xn -+ Xn' The limit of the
sequence (An)' denoted by A = lim An (cf. [16]), is an operator whose
domain consists of all x E X for which there is an element y E X, such that
PnxED(A n) and lim AnPnx=y, where by definition Ax=y. A more
general procedure of forming limits of sequences of operators is that of
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limit inferior, denoted by A= lim inf An" This is an operator (possibly
multi-valued) from X to itself that is defined as follows (see also [1] and
[11]): For any elements x, YEX, YE(liminfAn)x itT there exists a
sequence (x n), X nE X n, such that lim X n = x and lim Anxn= y. As an
operator, the limit inferior is an extension of the limit of the sequence (A,,).
We shall also make use of the following set (cf. [1]):

DO = {x E X: there exists a sequence (x,,),

x" E D(A,,) such that lim x" = x

and sup" IIA n x n ll" < OCJ}.

Recall that a semigroup of linear operators on a Banach space X is a
mapping T(t): (0, OCJ) -. L(X), (where L(X) is the space of bounded linear
operators on X), satisfying T(t + s) = T(t) T(s), for all t, s > O. We assume
in this discussion that the semigroup is a strongly continuous map on
(0, 00). The infinitesimal operator of T(t) is defined as usual by

A" x = lim h - I ( T( h) - I) x
x-o+

whenever the limit exists. The closure A", when it exists, is called the
infinitesimal generator (i.g.) of T(t). The type of T(t), denoted W o is given
by

Wo = lim inf t - 'In II T( t) II.
1>0

A Co semigroup is one that is strongly continuous at t = 0, where by
definition T(O) = I. A semigroup T( f), f> 0 is of class (1, A) if it satisfies the
following:

( II T(t)11 dt < 00, hm Ala: e-A1T(t)xdt=x,
A-'X' 0

XEX.

Every Co semigroup is of class (1, A), but the converse is not true in
general (cf. [14]). For further details and information on this subject we
refer to [3, 5, 8]. For convenience we quote here Theorem 2 of [1].

THEOREM A (cr. [1, Theorem 2]). Let T,,( t), t > 0 be a semigroup of
class (1, A) that is defined on X n and with i.g. An, such that the following
conditions are satisfied: There exist constants M, C> 0 and w ~ 0 such that

nEN,
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}, ~W, nE N. (** )

Then the following assertions are equivalent:

(i) There exists a semigroup T(t) of class (1, A) defined on X, such
that for each x in X and x" in X"' n = 1,2, ...

lim x" = x => lim T,,(t) x" = T(t) x, t >°
uniformly on compact suhsets of (0, Cf) ),

(ii) DC and R().oI-.1) are dense in X for some Ao>W.

In either case A is the i.g. of T( t).

Remark. In proving (ii) => (i), it was merely shown in [1] that the limit
given by (i) holds for zED(.1 2

) and (z,,) satisfying Proposition I-d of [1].
Since the main results in the present paper depend to a large extent on this
formula, we find it convenient to supply here some details concerning this
proof and which were not given in [1].

Let us recall Eqs. (11 ) and (12) of [1], which define the semigroups T( t)
and T,,(t) in terms of their respective resolvent operators; namely, that for
some y>w

• 1 fl' + iY~. • - dA
T(t) z = z + tAz + -2' . e"R().; A) A 2z 72,

Xl y-ir A
(lIA)

1 ., - ir

T,,(t) z" = z" + tA"z" + 2nir ir ehR().; A,,)

2 dA
x A"zn--;;-::)'

A"
( 12A)

where z and (z,,) are as in Proposition I-d of [1]. We note from the proof
of Theorem 2 in [1] that the integrand in (12A) is dominated in norm by
cxMe)'I/I,W, which is bounded on a given interval [a, b] by cxMeYb/IAI 2

•

It follows from this, (II A), and (l2A) that lim T,,( t) z" = T( t) z holds
uniformly on compacts. _

Now, let x E X and x" E X" be such that lim x" = x. Since D(.1 2
) is dense

in X (note that ),2R 2(A; A) x -+ x, VXE X, cf. [1 ]), we find that: Given Ii>°
there is a z E D( A2) such that II x - z II < 0.....By the above~rgument, there is
a sequence (z,,), z"ED(A~), such that limz,,=z and limT,,(t)z,,=T(t)z
uniformly on compact subsets of (0, (0). Moreover, by Theorem 7.4.4 of
[8] (see also [12, Theorem 4.3]), we have the following: If [a, b] c (0, 00 )

then

VtE[a,h], nEN.
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Therefore, the desired result is obtained from the following inequality:

II TAt) Xn - PnT(t) xll n~ II Tn(t)(xn - zn)JJn + II Tn(t) Zn - PnT(t) zlln

+ IIPnT(t)(z-x)lln'

257

It is worth noting here, that conditions (*) and (**) were first used by
I. Miyadera [12].

2. BOUNDEDNESS OF RIEMANN SUMS

We consider here the problem of uniform boundedness of Riemann sums
of the type Lj: 1 PntjJUPn), where (Pn) is a null sequence of positive
numbers and tjJ( t) is a non-negative function that is defined on (0, (0). The
first result deals with the case of monotone functions and the proof is
rather simple. We state it as a lemma.

LEMMA 1. Let t/J(t) E L 1(0,00) be a non-negative non-increasing function,
and let (Pn) be any null sequence of positive numbers. Then the sums
Lj: I Pnt/J(JPn) are bounded uniformly in n.

Proof :Lt,:, I Pn t/JUPn) ~ Lj~o nt.+ I) P. tjJ(t) dt = J;;,' t/J(t) dt. I
Another result in this direction was given by P. Chernoff in a private

communication with the author. We summarize that result in the
remainder of the section.

The following result, which is a corollary of "The Martingale
Convergence Theorem," was obtained by B. Jessen [9].

THEOREM B. (B. Jessen). Let f be periodic with period 1 and integrable in
the Lebesgue sense over (0, 1). Then, with Sn(/; x) = (lIn) Li~ I f(x+ lin),
the sequence S2'(/; x) converges 10 Hf(x) dx as n -> CX) for a.e. x.

COROLLARY!. (P. Chernoff). Let O~fELl(_CX),CX) then for a.e.
XE9l,

Proof Define F(x):= L~~ -ex. f(x + m). Note that F(x + t) = F(x).
Also,

( F(x) dx = f (f(X + m) dx = f~:xJ f(x) dx < 00.
- ce
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So FE L' (0, 1). Therefore, by Jessen's Theorem, for a.e. x,

1 2" ( j) I' f'x,
2" J~I F x + 2" -+ 0 F(x + s) ds = _xf(s) ds,

but the left side is precisely (1/2") LI~ _x f(x + i/2"). I
Now, suppose thatfEL'(O, CD). Extendfto be =0 for x<O, then from

Corollary 1 applied to f we have:

COROLLARY 2. (P. Chernoff). Iff ELI (0, 00), then for a.e. x E 9l,

lx'
2" L f(x + i/2") -+ f f(x) dx.

\' + j/2n > 0 0

3. CONVERGENCE OF DISCRETE SEMIGROUPS

In what foHows, F II denotes a bounded operator on the Banach space
XII' All the operator defined by All :=P II I(FII-I), PII>O, and A:=
lim inf All'
To furter simplify the notation we write

(
t )J 1Q11) ( t) = e- liP" - -:-; ,

PII }.

where t, PII > 0, n = 1, 2, ... and i is a non-negative integer. The main results
here are Theorems 1-3. Theorem 2 extends (and its proof depends on)
Theorem 1. Theorem 3 is rather independent. Some important conse
quences appear in the coroHaries. First, we state a lemma. The proof is
elementary and we omit it.

LEMMA 2. Let k be a positive integer, then

and

THEOREM 1. Let °~ t/J(t), t E (0,00) be a non-increasing function, such
that t/JU) E L l(O,CXJ) n U(O, 00) for some p> I. Further, let (FII ),
F II E L( XII)' n = 1, 2, ... be a sequence of operators and (p 11) a null sequence
of positive numbers, such that following conditions are satisfied:
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(i) IIF~II,,:::;;I/I(kp,,), Vk,nEN,

(ii) There exist constants C> 0 and w ~ 0 such that
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n E N, ), ~ w,

(iii) DO and R().oI - A) are dense in X, for some )00> w.

Then A is the iog. of a semigroup T(t) of class (I, A) defined on X. Moreover,
for each XE X and x" EX", n E N:

I· - 1:-- F[t/p"J - T( ) .1m x" - x => 1m " x" - t 0\' (2)

Proof Let T,,(t) = etA" denote the semigroup on X" that is generated by
An' We begin by showing that A is the i.g. of a semigroup T(t) of class
(1, A), (a fortiori A is single valued) such that

t>O (3)

uniformly on compact t-intervals. For this, it suffices to show that
condition (*) of Theorem A holds, since (**) is already assumed in (ii).
Now,

~ x

II T,,(t)II,,:::;; L: Q"k(t) IIF~II,,:::;; e t/I'n + I Q"k(t) t{t( PlI k ).
k~O k~1

A routine calculation along with Lemma 1 then shows that

:::;; M, +r I/I(t) dt,
o

where M 1 is some constant.
To prove (2), we show first that if x' E DO, then there is a sequence (x~),

x~ E X" such that lim x~ = x', and

(4 )

where for a given t > 0, k" = [t!p,,], so that p"k,,:::;; t, Vn and p"k" -+ t as
n -+ CfJ.

Let x' E DO. Then, by definition, there is a sequence (x;,) such that
limx~=x' and sup" IIA"x~II,,<CfJ. Note that Ilx;,II,,:::;;P, Ilx'll, nEN for
some constant PI (depending on x as wel1 as on the sequence (x~)). We
have the following:
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:x:

II(exp( p"k"A,,) - F~") x;,II" ~ L Q";(p,,k,,) II(F~ - F~n) x~ll"
;~ 0

y;,

~ L Q"j( p"k,,) II(F;,- F~n) x;,II"
j~ L

+e k"II(I-F~")x~ll"

=11 +12 ,

Here, we may consider only the non-zero values of k", since this can
always be achieved by taking n sufficiently large. Also, note that the left
side is trivially equal to 0 when k" = O. Now,

I2 =e kn t~1 (F:'-I_F:l)X~t~e-k"p" IIA"x~lI" "~IIIF;;'-III"

{
kn I }

~ekn{s~p IIA"x;,II,,} P,,+ "~I p"t/J(mp,,)

~ekn{sup IIA"x;,II,,} {p,,+r t/J(t)dt}.
" 0

Hence, 12 -> 0 as n -> 00. For II' we follows an argument that was used in
[2, Lemma 2.5]. We have for eE (0,1)

Y.

II = L Q"j(p"k")'II(F~-F~")X;,II"
j~ I

where

and where it is noted in view of [3, p. 18J that

Therefore, we have

I Q"j( p"k,,) II(F~ - F~n) x~ll" ~ Ilx~ll" L: Qnj(Pnkn)(IIF~lln + IIF~nlln)
I I

~ PI Ilx'll L: Q"j( p"kn)( t/J( Pnj) + t/J( Pnkn))
I
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k'
~ 2fJl Ilx'llljJ(p,,) e- kn L-f

I }.

, t
~2fJl Ilx IlljJ(p")'~k

£ "

- I
=2fJlllx'lljp"ljJ(p,,) 0 .fk..4P:k:.'

£- q k" P p"k"
where (1/p)+ (1Iq)= I, and since
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for all n E N, the right side in the last sequence of inequalities (for L1) tends
to 0 as n~ 00. For L2' we have

LQ",( p"k,,) II(F~ - F~n) x~lI" ~ p" IIA"x~lInLQnj(P"k,,) L IIF;;'II"
2 2 m

~ Pn IIAnx~lln LQ"j( p"k,,) I ljJ(mp,,) = .~,
2 m

where the inner sum is taken over all m satisfying,

Now, for JEL.2' we have that (I-£)k,,~j~(l+£)k,,, and since
tI2~Pnk" for n large, we see that (1-£)tI2~(l-£)p"k,,~Pnj.So that,
in fact, (I - £) t/2 ~ p" min{j, kn}. It follows from this and the assumption
that ljJ is non-increasing that

I ljJ ( pnm) ~ ljJ ((I - £) t /2) Ij - k ,,i.
m

Therefore, applying Schwartz inequality and Lemma 2, we get

J ~ p" IIA nx;,lIn ljJ((l - £) t/2) I Q"j( p"k,,) Ii - k,,1
2

(

oc ) 1/2

~P" IIA"x~lIn ljJ((l-£) t/2) ,~o Q"j(p"k,,)

x(f Qn,(Pn kn)(j_kn)2)1/2
;=0

~PnJkn IIA"x~ll"ljJ((l-£)tI2),

which goes to 0 as n ~ 00. Thus (4) is established.
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Finally, let x E X and let x" EX,,, (n E N) be such that lim x" = x. Given
c > 0, there is (by (iii)) an x' E DC such that Ilx - x'il < c. Moreover, there
is a sequence (x;,) for which (4) is satisfied and such that lim x~ = x'.
Hence,

II P" T(t) x - F~nxull" ~ IIP,,( T(t) - T( p"k,,)) xii" + liP" T( p"k,,)(x - x')II"

+ liP" T( p"k,J x' - T,,( p"k,,) x;,II" + IIF~n(x" - x;,)II"

+ II(T"(p,,k,,) - F~n) x;,II".

The first term on the right side goes to °by the strong continuity of T(t)
for t>O. Also, (p"k,,) is contained in some interval [a,h]c(O, (0),
and since IIT(t)1I is bounded for all t?-a>O, (cf. [8]) the second term is
bounded by a constant multiple of c. The third term tends to °as n-->'lJ

because of the uniform convergence on compacts guaranteed by (3). The
fourth term is bounded by l/J( 1/2) Ilx" - x;,11 for all large values of n, while
the last term tends to °in view of (4). Thus (2) is verified. I

THEOREM 2. Let °~ l/J satisfy the following: For some}' ?- 0, e i"l/J( t) is
non-increasing over (0, CX)), and helongs to L' (0, X! ) (\ LP(O, CX)), for some
p> 1. Further, leI (F,,), FnE L(X,,), n = 1, 2, ... he a sequence of operators
and ( p,,) a null sequence of positive numhers, such that conditions (i), (ii) of
Theorem 1 and (iii)' are sati.~fied, where (iii)' is the same as (iii) hut .....ith
Ao> (J) + 1'. Then, A is the i.g. of a (l, A) semigroup T(t), t > °on X, and (2)
holds.

Proof Put ~(t)=e i'l/J(t), E,,=e il'nF,,, B"=p,, '(En-I), and B=
lim inf BI1' The following relations are easily checked:

B" = e )'PnA" + 1',,1, where r"=p,, '(e "l'n_1) and

We show that if Fn, An, A, and l/J satisfy the conditions of Theorem 2,
then the operators En, Bn, B, and the function ~ satisfy the conditions of
Theorem 1 (note that ~ already fulfills the requirements of Theorem 1). (i)
holds since

IIE~II" = lie il'nkF~II" ~ e i'/Inkl/J(kp,,) = ~(kPn)'

For (ii), we observe that

R(A;Bn)=JXe AleIBndt=Jxe-U )'n11exp(te l'l'nA n)dt
o 0
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where s=te"Pn and 0n=U'-"n)ei'l'n. Hence,
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nE N.

Note that on> A~ w, for all n. Finally, it is clear that

DO = {XE X: 3(xn ), lim X n = X, sup IIA"x"lln <x}

= {x EX: ?(x n ), lim x" = x, sup IIB"xnll" < IX },

"
and that R()'o/- A) = R( (;'0 - Y) 1- S). Hence (iii) is also satisfied. There
fore, by Theorem I, there is a (I, A) semigroup S(t), t > 0 on X, with i.g.
S and such that

lim x" = x= lim £~'""lx,, = Set) x, t > o.

The proof is completed by showing that, in fact,

lim X n= x = lim F,;liPn1x" = e"iIS(t) x, I> O.

Note that the semigroup T(t) :=e"iIS(t) is of class (1, A), with i.g. A (cf.
[8, Theorem 12.2.3]). So suppose that lunx,,=x, then we observe that

IIF~I/Pn]x" - PnT(t) xii" = Ile),Pn[liPn]£~I/I'n]x" - e)'P"S(t) xii"

~ Ie i"l'n[ I/I'n 1 _ e )'1 I 11£;' lPn ]II" II x" II "

+ e)'1 11£[,ll'n]x" - P"S(t) xlln

~ f32 Ilxll 0(p,,[t/p,,]) !e,i'n[liPn] - e'll

+e'" II£~I/I'n]xn - P"S(t) xii".

It is readily seen that the right side tends to 0 as n -> Cf) (note that
0(Pn[t/Pn] ~ 0(t/2) for n large enough). I

COROLLARY 1. Suppose that if; possesses the properties required by
Theorem 2, and that hypotheses (i), (ii), and (iii)" are fullfi'/led, where

(iii)" core A (cf [5]) and R(Ao/- A) are dense in X for some
;'0> W + y, where A = lim An.

Then the conclusion of Theorem 2 remains valid.

Proof Core A c D(A) c D(A) c DO and RCAo/- A) c R(A.o/- A).
Hence, condition (iii)' of Theorem 2 satisfied. I
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COROLLARY 2. (A strong Form of Trotter's Theorem). Assume the
following:

(a) The stability condition (1) is satisfied,

(b) DO and R(;'o/- A) are hath dense in X for some ;'0> 2w.

Then A is the i.g. of a Co semigroup T( t), t;::: 0 and such that (2) holds.

Proof Choosing rjJ(t) = Me'''', and }' a number such that w <}' < Ao - w.
Then with ~(t)=e i"IjJ(t), assumptions (i) and (iii)' of Theorem 2 are
satisfied. Also, (I) implies (ii), since for sufficiently large A

where
eWPn

- t
()n = > 0,

Pn

and ()n ---+ was n ---+ 00. Thus, according to Theorem 2, there is a semigroup
T(t) satisfying (2) and whose i.g. is A. Furthermore, from (1) it follows that

Hence, by (2), II T(t)11 ~ M'e"", t ~°for some constant M', which shows
that T(t) is a Co semigroup. I

Our last result deals with the case where e-"'IjJ(t) is not monotonic for
any choice of y~ 0. In this case, the result is established for a special choice
of the sequence (Pn), namely, Pn = 2 -no We have:

THEOREM 3. Let 0~1jJ and }'~O he such that e-"IjJ(t)EL'(O,oo)n
LP(O, Cf)) for some p> 3. Further, let (Fn), FnE L(Xn) be a sequence of
operators and Pn = 2 n, n E N, such that (i)' and conditions (ii), (iii)' of
Theorem 2 are satisfied, where

(i)' There exists an x> 0 satisfying Corollary 2, of Theorem B, such
that

Then the conclusion of Theorem 2 remains valid.

Proof As in the proof of Theorem 2, it suffices to consider here the
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case where y = O. Throughout this proof Pn = 2 -n so that by Corollary 2
(Chernoff) we have for all n E N,

ex:;

L PnljJ(x + Pnj) ~ L 1
j=O

w

L PnIjJP(x+Pnj)~L2'
j~O

(5)

where L), L 2 are some constants.
We note first of all that given positive integers k, n. If we put t = kpn'

then condition (i)' implies

IIF~II n= IIF~r/p"] lin ~ ljJ(x + t) = ljJ(x + kPn)'

The proof in this case is parallel to that of Theorem 1. Thus relation (3) is
verified in exactly the same way, but here we make use of (5) instead of
Lemma 1. To verify (4), we proceed as before: Letting x', (x~), and k n have
the same meaning as in the proof of Eq. (4), we get

The proof that 12 -> 0 is the same as in Theorem 1. To estimate II, we make
use of Holder's inequality and (i)' above, to find that

oc

II ~ Pn IIAnx~lln L Qnj(Pnkn) L ljJ(x + mpn)
j~ )

w

~PnIIAnx~lln L: Qnj(Pnkn)·maxljJ(x+mpn)·lj-knl
j=l m

where m is as before (see the proof of Theorem 1). Now, since
Pn maxm ljJ(x + mPn) ~ Lj':o PnljJ(x + Pnj) < L), we find by Lemma 2 that

(

w )I~
J, ~p;114L:/4'L Qnj(Pnkn)(j-kn)4

J= 1

= L:/4p;3/4(3p~k~ + p~kn)1/4

~ L:/4p;3/4(3t2 + Pnt)I/4,
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while for J 2 we apply J-folder's equality once more, with p> 3 and q the
conjugate of p to find lilat

(

,x-. ) 3/4q ( f. ) 3,'4p
J 2 ~ /~I Q,,/( p"k,,) j~1 Q,,/( p"k,,)· (m,,~x tIt(x + mp,,))p

~ p" 3/4p (i Q"j( p/1k,,). max p"tltP(x + m p,,))3/4
P

i= 1 m

~ p" 3/4p L~/4P.

Therefore,

which goes to 0 as n -+ 00, provided that p> 3. Thus (4) is established in
the present case. The rest of the proof proceeds almost similarly to that of
Theorem 1. I

Remark. It is possible to replace (i)' in Theorem 3 by (i), (as noted
above the former implies the latter). However, this requires an extra
assumption on the function tit, e.g., if one requires that tit be bounded on
compact subsets of (0, (1)). The only place where this assumption would be
used is in evaluating the term IIF~n(x"-X;,)II,,, which occurs in the last
paragraph of the proof (see Theorem 1).

EXAMPLE. Consider the Cauchy problem

QU
ar=P(D)u, u(x,O)=f(x), (6)

in the Banach space L 2(9i)=e(9i)xL 2(9i), with the standard nom;,
where u(x, f) = (u 1(x, t), u2(x, f)) is a vector valued function of the real
variables xE9i, f>O and f(x)= (/1 (X)'/2(X)), fi(X)EL 2(9i) is the given
initial condition, and P(D) is the partial differential operator with respect
to x, given by

The method of discrete approximation corresponding to this problem is
described as follows: Let h > 0 denote the mesh spacing, and p > 0 the time
increment, then QU/Of is approximated by the forward difference quotient
p -I [u(x, f + p) - u(x, f)], while the partial derivative QU/ox with respect to
x is approximated by the difference quotient

Ahu(x, f)=(2h)-1 [u(x+h, f)-U(X, f)].
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So, the discrete problem corresponding to (6) is
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where

U(x, t+p)=F(p)u(x, t), U(x, 0) = f(x),

ip A~ )
1+ P A~ + ip A~ .

(7)

Using the Fourier transform, the discrete problem takes the form

u(~, t +p) = F(p) U(~, t), u(~, 0) =1(~),

where the Fourier transform of the scalar valued function u(x, t) with
respect to x is given as usual by

u(~,t)= ~f e-ix{u(x,t)dx.
V 2n 91

The transformed matrix of F( p) is

Letting (Pn), (h n) be null sequences of positive numbers, we write F n
for F( Pn) when P and h are replaced by Pn and hn, respectively, in the
expression defining F( p). Similarly, we write

F[t/PnJ = ((1 + PnrLn)[t/PnJ Pn[t(Pn](h; 1 sin ~hn)3 (1+ PnrLn)[f;PnJ -I)
n 0 (1 + PnrLn)[I/PnJ '

where an = - (h n-
1 sin ~hn)2 + i(hn-

1 sin ~hn)4.

Using the properties of the multiplier operators in L 2(9t) (see, e.g.,
[4, VIII, Sect. 3.3]) we find that

where a is some constant and

all = sup 1(1 + PnrLn)[t/PnJI ~ K suplexp[t( _~2+ i~4)]1 ~ K I ,

{ {

a 12 = sup IPn[t(Pn](h; 1 sin ~hn)3 (1 + Pn<Xn)[t/PnJ - II
{

~ K 2 sup It~3 exp[t( _~2+ i~4)]1 ~ K 3 /jt,
{

where K I , K2, and K3 are constants. The inequalities for all and a l2 are

640733-3
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verified via standard arguments of calculus. For example, we note that
It~3 exp[t( - ~2 + i~4)]1 attains its maximum at the point t~2 = 3/2. One
should also note when applying Theorem 2 (or its Corollary 1) to the
present situation, that Xn = X = L 2(9\) and Pn = I for all n E N. In this case
the notion of limit reduces to the ordinary one. Therefore, setting l/!(t) =

ct(K3/Jf+Kd and choosing, e.g., Y= 1, we see that e-tl/!(t)ELl(O, oo)n
L 3

/
2(0, 00), and it is decreasing. Thus, IIF~t/Pn]lln~ l/!(t), which in turn

implies condition (i) of Theorem 2 (see also the proof of Theorem 3 and the
remark following it). Condition (ii) follows by an argument similar to
the one used in proving Eq. (A-5) of [15]. In order to verify (iii)' of
Theorem 2, we use the set D I = {u E V(9\): D has compact support}
as a core for P(D). Note that with A n =p;l(Fn -I), we have that
lim An = P(D) in the sense that Anu -> P(D) u, u E D in the L 2 norm.
This may be verified as in the example of [6, p. 549], by considering the
transformed problem where it is shown, e.g., that AnD -> P(;;) D as n -> 00

on the support of D (for other related details, see [4, p. 532]). It is also
known that (iii) is satisfied for all large )'0 in the case of the operator P(D).
Therefore, by virtue of Corollary 1 of Theorem 2, one concludes the
existence of a semigroup T(t), t> 0 of class (I, A) on L 2(9\) which solves
the Cauchy problem (6), and furthermore, that the solution of the discrete
system, namely F~t/I'n]u(x,0), converges to the solution T(t) u(x, 0) of (6)
as n -> 00.
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